## Problem B. Binary Operation

Consider a binary operation ⊙ defined on digits 0 to 9, ⊙ : {0, 1, ..., 9} × {0, 1, ..., 9} → {0, 1, ..., 9}, such that 0 ⊙ 0 = 0.

A binary operator ⊗ is a generalization of ⊙ to the set of non-negative integers, ⊗ : . The result of `a` ⊗ `b` is defined in the following way: if one of the numbers `a` and `b` has fewer digits than the other in decimal notation, then append leading zeroes to it, so that the numbers are of the same length; then apply the operation ⊙ digit-wise to the corresponding digits of `a` and `b`.

Example. If `a` ⊙ `b` = `ab` mod 10, then 5566 ⊗ 239 = 84.

Let us define ⊗ to be left-associative, that is, `a` ⊗ `b` ⊗ `c` is to be interpreted as (`a` ⊗ `b`) ⊗ `c`.

Given a binary operation ⊙ and two non-negative integers `a` and `b`, calculate the value of `a` ⊗ (`a` + 1) ⊗ (`a` + 2) ⊗ ... ⊗ (`b` - 1) ⊗ `b`.

### Input

The first ten lines of the input contain the description of the binary operation ⊙. The `i`-th line of the input contains a space-separated list of ten digits - the `j`-th digit in this list is equal to (`i` - 1)⊙(`j` - 1).

The first digit in the first line is always 0.

The eleventh line of the input contains two non-negative integers `a` and `b` (0 ≤ `a` ≤ `b` ≤ 10^{18})

### Output

Output a single number - the value of `a` ⊗ (`a` + 1) ⊗ (`a` + 2) ⊗ ... ⊗ (`b` - 1) ⊗ `b` without extra leading zeroes.

### Sample Input

0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 2 4 5 6 7 8 9 0 1 2 3 5 6 7 8 9 0 1 2 3 4 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 6 8 9 0 1 2 3 4 5 6 7 9 0 1 2 3 4 5 6 7 8 0 10

### Sample Output

15

All Submissions

Best Solutions

**Point Value:** 20 (partial)

**Time Limit:** 2.00s

**Memory Limit:** 64M

**Added:** Jul 26, 2011

**Languages Allowed:**

C++03, PAS, C, HASK, ASM, RUBY, PYTH2, JAVA, PHP, SCM, CAML, PERL, C#, C++11, PYTH3

## Comments (Search)

It's quiet in here...