2010 Canadian Computing Competition, Stage 1
Problem J2: Up and Down
Nikky and Byron are playing a silly game in gym class. Nikky is told by his teacher to walk forward a steps and then walk backward b steps, after which he repeats a forward, b backward, etc. Likewise, Byron is told to walk forward c steps and then walk backward d steps, after which he repeats c forward, d backward, etc. You may assume that a ≥ b and c ≥ d.
Byron and Nikky have the same length of step, and they are required to take their steps simultaneously (that is, Nikky and Byron will both step forward on their first steps at the same time, and this will continue for each step).
Nikky and Byron start walking from one end of a soccer field. After s steps, the gym teacher will blow the whistle. Your task is to figure out who has moved the farthest away from the starting position when the whistle is blown.
Input Format
The input will be the 5 integers a, b, c, d (1 ≤ a, b, c, d ≤ 100), and s (1 ≤ s ≤ 10000), each on a separate line.
Output Format
The output of your program will be one of three possibilities: Nikky
if Nikky is farther ahead
after s steps are taken; Byron
if Byron is farther ahead after s steps are taken; Tied
if Byron and
Nikky are at the same distance from their starting position after s steps are taken.
Sample Input
4 2 5 3 12
Sample Output
Byron
Explanation
Notice that after 12 steps, Nikky has moved 4 − 2 + 4 − 2 steps, for a total of 4 steps from the starting position, whereas Byron has moved 5 − 3 + 4 steps, for a total of 6 steps from the starting position. Thus, Byron is ahead.
All Submissions
Best Solutions
Point Value: 5
Time Limit: 2.00s
Memory Limit: 16M
Added: Feb 23, 2010
Languages Allowed:
C++03, PAS, C, HASK, ASM, RUBY, PYTH2, JAVA, PHP, SCM, CAML, PERL, C#, C++11, PYTH3
Comments (Search)
How do you do this?
You'll find the problem set here.