WOBURN CHALLENGE VII

TAKE HOME CHALLENGE - THE FIRST PERSON TO SOLVE THIS IN POLYNOMIAL TIME/SPACE (OR PROVE IT'S NOT POSSIBLE) WILL RECEIVE A PRIZE OF SOME SORT (PRIZE YET TO BE DETERMINED…)

EVIL TASKS - THE SEQUEL

You may recall Frodo’s distress over the efficiency of the evil forces. As in any good sequel, here’s a flashback:

"'Tis not a real secret" answered Bilbo. "Before his defeat at Mordor, Sauron had invented a machine he called a computer. Apparently, it is a kind of counting device, very efficient at creating a sort of bug. … Frodo started wondering, "A dynamic, parallel task scheduling program... if only I had brought my Z/Z-- book...". …
Given a number N ≤ 101 of evil guys and a number M ≤ 101 of evil tasks, where each task takes a multiple of 1 standard hour, find the shortest time to execute all of the tasks. The evil guys - orcs, especially - are not so clever so you will also need to print out a schedule for them, as to when to execute the task.

Using Gandalf’s advice, Frodo was able to determine the schedule in which the evil tasks were being performed. Now, Sauron is no ordinary villain, and he was outraged that Frodo had discovered his methods of maintaining efficiency! But that was a problem to be dealt with later… At the moment, Sauron had a larger problem on his hands: It turned out that the orcs were REALLY stupid creatures, and they kept getting confused despite the fact that they had a schedule at their paw-tips. When a large enough crowd of orcs had gathered during any given time slot Sauron found they got really rowdy and did their job poorly. Sauron decided to solve this problem by minimizing the number of orcs working in any given time slot, having minimized the number of slots first.

Input

N M (-1 -1 denotes end of data)

orc # task # time units (-1 -1 -1 denotes end of orcs / tasks)

Output

Time required (standard hours)

For each 1 hour time period, print the orcs - and the corresponding tasks (in brackets) - which will be completed during that period.

 Sample Input

 Sample Output

 3 3

 3

 1 1 1

 1(1) 3(3)

 1 2 1

 1(2) 2(3)

 1 3 1

 1(3) 2(2)

 2 2 1

 2 3 1

 3 3 1

 -1 -1 -1

 -1 -1
