\documentclass[6pt]{scrartcl} \usepackage{amsfonts} \usepackage{amsmath} \usepackage{amssymb} \setlength{\topmargin}{-3cm} \setlength{\oddsidemargin}{-2cm} \setlength{\evensidemargin}{-2cm} \setlength{\textwidth}{20.5cm} \setlength{\textheight}{26.5cm} \setlength{\parindent}{0.0in} \setlength{\parskip}{0.0in} \pagestyle{empty} \newcommand\numberthis{\addtocounter{equation}{1}\tag{\theequation}} \makeatletter \g@addto@macro\normalsize{% \setlength\abovedisplayskip{3pt} \setlength\belowdisplayskip{3pt} \setlength\abovedisplayshortskip{3pt} \setlength\belowdisplayshortskip{3pt} } \makeatother \addtolength{\jot}{-0.9ex} \usepackage{multicol} \begin{document} \begin{multicols}{3} Vector identities (Griffiths) \begin{gather*} \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \\ \nabla(fg) = f\nabla g + g\nabla f \\ \begin{split} \nabla(\mathbf{A} \cdot \mathbf{B}) &= \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) \\ &+ (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} \end{split} \\ \nabla \cdot(f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot \nabla f \\ \nabla \cdot(\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}) \\ \nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f) \\ \begin{split} \nabla \times(\mathbf{A} \times \mathbf{B}) &= (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} \\ &+ \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) \end{split} \\ \nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2\mathbf{A} \end{gather*} Vector identities (Jackson) \begin{gather*} (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b}\cdot\mathbf{d}) - (\mathbf{a}\cdot\mathbf{d})(\mathbf{b}\cdot\mathbf{c}) \\ \int_V \nabla \cdot \mathbf{A} \, d^3 x = \int_S \mathbf{A} \cdot d\mathbf{a} \numberthis \label{eqn:divergence} \\ \int_V \nabla \psi \, d^3 x = \int_S \psi \, d\mathbf{a} \\ \int_V \nabla \times \mathbf{A} \, d^3 x = \int_S d\mathbf{a} \times \mathbf{A} \\ \int_V (\phi\nabla^2 \psi + \nabla\phi \cdot \nabla\psi) \, d^3 x = \int_S (\phi\nabla\psi)\cdot d\mathbf{a} \numberthis \label{eqn:green1} \\ \int_V (\phi\nabla^2 \psi - \psi\nabla^2\phi) \, d^3 x = \int_S (\phi\nabla\psi - \psi\nabla\phi) \cdot d\mathbf{a} \numberthis \label{eqn:green2} \\ \int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \int_C\mathbf{A} \cdot d\mathbf{l} \numberthis \label{eqn:stokes} \\ \int_S d\mathbf{a} \times \nabla\psi = \int_C \psi \, d\mathbf{l} \end{gather*} (\ref{eqn:divergence})~divergence theorem; (\ref{eqn:green1})~Green's first identity; (\ref{eqn:green2})~Green's theorem; (\ref{eqn:stokes})~Stokes's theorem \\ Spherical coordinates (Griffiths) \begin{gather*} d\mathbf{l} = \hat{\mathbf{r}} \, dr + r\hat\theta \, d\theta + r\sin\theta \, \hat\phi \, d\phi \\ \begin{aligned} \hat{\mathbf{x}} &= \sin \theta \cos \phi \, \hat{\mathbf{r}} + \cos \theta \cos \phi \, \hat\theta - \sin \phi \, \hat\phi \\ \hat{\mathbf{y}} &= \sin \theta \sin \phi \, \hat{\mathbf{r}} + \cos \theta \sin \phi \, \hat\theta + \cos \phi \, \hat\phi \\ \hat{\mathbf{z}} &= \cos \theta \, \hat{\mathbf{r}} - \sin \theta \, \hat\theta \\ \hat{\mathbf{r}} &= \sin \theta \cos \phi \, \hat{\mathbf{x}} + \sin \theta \sin \phi \, \hat{\mathbf{y}} + \cos \theta \, \hat{\mathbf{z}} \\ \hat\theta &= \cos \theta \cos \phi \hat{\mathbf{x}} + \cos \theta \sin \phi \, \hat{\mathbf{y}} - \sin \theta \, \hat{\mathbf{z}} \\ \hat\phi &= -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}} \end{aligned} \\ \nabla t = \partial_r t \, \hat{\mathbf{r}} + \frac{1}{r} \partial_\theta t \, \hat\theta + \frac{1}{r\sin\theta} \partial_\phi t \, \hat\phi \\ \nabla \cdot \mathbf{v} = \frac{1}{r^2} \partial_r(r^2 v_r) + \frac{1}{r\sin\theta}\partial_\theta (v_\theta \sin \theta) + \frac{1}{r\sin\theta} \partial_\phi v_\phi \\ \begin{split} \nabla \times \mathbf{v} &= \frac{1}{r\sin\theta} \hat{\mathbf{r}}[\partial_\theta(v\phi \sin \theta) - \partial_\phi v_\theta] \\ &+ \frac{1}{r}\hat\theta\bigg[\frac{1}{\sin\theta}\partial_\phi v_r - \partial_r(rv_\phi)\bigg] + \frac{1}{r}\hat\phi[\partial_r(rv_\theta)-\partial_\theta v_r] \end{split} \\ \nabla^2 t = \frac{1}{r^2} \partial_r(r^2 \partial_r t) + \frac{1}{r^2 \sin \theta} \partial_\theta (\sin \theta \, \partial_\theta t) + \frac{1}{r^2 \sin^2 \theta} \partial_{\phi\phi}t \end{gather*} Cylindrical coordinates (Griffiths) \begin{gather*} d\mathbf{l} = \hat{\mathbf{s}} \, ds + s\hat\phi \, d\phi + \hat{\mathbf{z}} \, dz \\ \begin{aligned} \hat{\mathbf{x}} &= \cos \phi \, \hat{\mathbf{s}} - \sin \phi \, \hat\phi &\quad \hat{\mathbf{y}} &= \sin \phi \, \hat{\mathbf{s}} + \cos \phi \, \hat\phi \\ \hat{\mathbf{s}} &= \cos \phi \, \hat{\mathbf{x}} + \sin \phi \, \hat{\mathbf{y}} &\quad \hat\phi &= -\sin\phi \, \hat{\mathbf{x}} + \cos\phi \, \hat{\mathbf{y}} \end{aligned} \\ \nabla t = \partial_s t \, \hat{\mathbf{s}} + \frac{1}{s} \partial_\phi t \, \hat\phi + \partial_z t \, \hat{\mathbf{z}} \\ \nabla \cdot \mathbf{v} = \frac{1}{s} \partial_s (sv_s) + \frac{1}{s} \partial_\phi v_\phi + \partial_z v_z \\ \begin{split} \nabla \times \mathbf{v} &= \hat{\mathbf{s}}\bigg[\frac{1}{s}\partial_\phi v_z - \partial_z v_\phi\bigg] + \hat\phi[\partial_z v_s - \partial_s v_z] \\ &+ \frac{1}{s}\hat{\mathbf{z}}[\partial_s(sv_\phi)-\partial_\phi v_s] \end{split} \\ \nabla^2 t = \frac{1}{s}\partial_s(s\partial_s t) + \frac{1}{s^2}\partial_{\phi\phi}t + \partial_{zz}t \end{gather*} Useful variation \\ $\displaystyle \delta(ds/d\theta) = \frac{(dx^i/d\theta)(d\delta x_i/d\theta)} {ds/d\theta}$ (54.2)\\ Primed frame moves with velocity $v\hat{\mathbf{x}}$ relative to unprimed frame. \\ $\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$ \\ Transformation of the field (HW3, problem~2.1) \begin{alignat*}{3} E_x' &= E_x &\quad E_y' &= \gamma(E_y - \beta B_z) &\quad E_z' &= \gamma(E_z+\beta B_y) \\ B_x' &= B_x &\quad B_y' &= \gamma(B_y + \beta E_z) &\quad B_z' &= \gamma(B_z - \beta E_y) \end{alignat*} Basic objects of relativistic electrodynamics \\ $A^i = (\phi, \mathbf{A}) \quad A_i = (\phi, -\mathbf{A}) \quad F_{ij} = \partial_i A_j - \partial_j A_i$ \\ $\mathbf{E} - \nabla \phi - \partial\mathbf{A}/\partial t \quad \mathbf{B} = \nabla \times \mathbf{A}$ \[ F_{ij} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix} \] \[ F^{ij} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix} \] $F_{\alpha\beta} = -\epsilon_{\alpha\beta\gamma}B_\gamma$ (p.~80) \quad $\epsilon^{0123} = +1 \quad \epsilon_{0123} = -1$ \\ $F^{ij}F_{kl} \propto B^2 - E^2 \quad F^{ij}F^{kl}\epsilon_{ijkl} \propto \mathbf{E} \cdot \mathbf{B}$ (p.~85) \\ $F^{ij}F^{kl}\epsilon_{ijkl}$ is a boundary term (4-divergence) \\ Four-current (p.~96) \begin{gather*} e \int u^i A_i \, ds = \frac{1}{c} \int A_i j^i \, d^4 x \\ j^i(x^j) = \sum_A \left[ ce_A \int u^i_A \delta^4(x^j - x^j_A(\tau)) \, ds \right] \end{gather*} Four-current for EM field (p.~101): $j^i = (c\rho, \mathbf{j})$ \\ Action for scalar field (\ref{eqn:scalar}) and EM field (\ref{eqn:vector}) \begin{gather} S = -mc \int ds + \int \phi(x^i) \, ds \label{eqn:scalar} \\ S = -mc \int ds - \frac{e}{c} \int u^i A_i \, ds - \frac{1}{16\pi c} \int F^{ij}F_{ij} \, d^4 x \label{eqn:vector} \end{gather} Equation of motion for charged particle: $mc \frac{du_i}{ds} = \frac{e}{c}F_{ij} u_j$ \\ $j=0$ gives: $\frac{d\mathcal{E}}{dt} = e\mathbf{E} \cdot \mathbf{v}$ \\ $j=1,2,3$ gives: $\frac{d\mathbf{p}}{dt} = e\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$ \\ Useful variation \\ $\delta(F^{ij} F_{ij}) = F^{ij} \delta F_{ij} + F_{ij} \delta F^{ij} = 2 F^{ij} \delta F_{ij} = 2F^{ij} \delta(\partial_i A_j - \partial_j A_i) = 2F^{ij} \partial_i \delta A_j - 2F^{ij} \partial_j \delta A_i = 4F^{ij}\partial_i \delta A_j = 4\partial_i (F^{ij}\delta A_j) - 4(\delta A_j)\partial_i F^{ij}$ \\ Bianchi identity (p.~88): $\epsilon^{ijkl} \partial_j F_{kl} = 0$ \\ Implications: $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$ \\ Equation of motion for EM field (p.~107): $\partial_i F^{ij} = \frac{4\pi}{c} j^j$ \\ Implications: $\nabla \cdot \mathbf{E} = 4\pi\rho$ and $\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c}\frac{\partial\mathbf{E}}{\partial t}$ \\ Gauge invariance: $\phi' \leftarrow \phi + \frac{1}{c} \frac{\partial \chi}{\partial t}; \mathbf{A}' \leftarrow \mathbf{A} - \nabla \chi$ \textit{i.e.} $A^{i\prime} \leftarrow A^i + \partial^i \chi$ ($\chi$ is a Lorentz scalar field) \\ Properties of Levi--Civita symbol (HW3) \begin{gather*} \begin{aligned} \epsilon_{\alpha\beta\gamma} \epsilon_{\mu\nu\lambda} &= \delta^{\alpha\beta\gamma}_{\mu\nu\lambda} \\ \epsilon_{\alpha\beta\gamma}\epsilon_{\mu\nu\gamma} &= \delta_{\alpha\mu}\delta_{\beta\nu} - \delta_{\alpha\nu} \delta_{\beta\mu} \\ \epsilon_{\alpha\beta\gamma} \epsilon_{\mu\beta\gamma} &= 2\delta_{\alpha\mu} \end{aligned} \\ \epsilon_{\alpha\beta\gamma} \epsilon_{\mu\nu\lambda} A_{\alpha\mu}A_{\beta\nu} A_{\gamma\lambda} = 6\det A \end{gather*} Useful relations for relativistic mechanics \begin{gather} \mathbf{v} = \frac{\mathbf{p}c^2}{\mathcal{E}} \label{eqn:vfromp} \\ \mathbf{p} = \frac{\mathcal{E} \mathbf{v}}{c^2} \label{eqn:pfromv} \end{gather} Motion in uniform E-field: Integrate equations of motion to obtain energy and momentum, then use (\ref{eqn:vfromp}) to get velocity. \\ Motion in uniform B-field: Note that energy is constant. Use (\ref{eqn:pfromv}) to write momentum in terms of velocity, then integrate equations of motion to get velocity. \\ Coulomb gauge: $\phi = 0; \nabla \cdot \mathbf{A} = 0; -\nabla^2 \mathbf{A} + \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = \mathbf{0}$ \\ Lorentz gauge: $\partial_i A^i = 0; \partial_i \partial^i A_j = \square A_j = 0$ \\ Fourier series \begin{gather*} f(x) = \frac{1}{L} \sum_{n=-\infty}^\infty \tilde f(k_n) e^{ik_n x} \\ \tilde f(k_n) = \int_{-L/2}^{L/2} f(x) e^{-ik_n x} \, dx \\ k_n = \frac{2\pi n}{L} \end{gather*} Fourier transform \begin{gather*} f(x) = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde f(k) e^{ikx} \, dk \\ \tilde f(k) = \int_{-\infty}^\infty f(x) e^{-ikx} \, dx \\ \int_{-\infty}^\infty e^{i(k-k')x} \, dx = 2\pi \delta(k-k') \end{gather*} Need $\tilde f(k) = \tilde f^*(-k)$ in order for $f(x)$ to be real. \\ Solution of wave equation for EM field in Coulomb gauge (p.~121) \[\mathbf{A}(\mathbf{x}, t) = \iiint \vec\beta^*(-\mathbf{k}) e^{i(\mathbf{k}\cdot\mathbf{x} + \omega t)} + \vec\beta(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} \frac{d^3 k}{(2\pi)^3}\] Monochromatic plane wave \\ $\vec\beta(\mathbf{k}) = \vec\beta \delta^3(\mathbf{k}-\mathbf{p}) (2\pi)^3$ which yields\\ $\mathbf{A}(\mathbf{x}, t) = 2\vec\beta \cos(\mathbf{p}\cdot\mathbf{x} - \omega t)$ (p.~122) \\ $\mathbf{k} \cdot (\mathbf{E} \times \mathbf{B}) > 0$ (p.~123) \\ $\omega = c\|\mathbf{k}\|$ (p.~124) \\ Poynting vector and EM energy density (p.~126) \begin{gather*} \mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{B} \\ \mathcal{E}_{\text{em}} = \frac{1}{8\pi}(E^2 + B^2) \\ \frac{\partial}{\partial t} \left[\frac{1}{8\pi}(E^2 + B^2)\right] = -\mathbf{j} \cdot \mathbf{E} - \nabla \cdot \mathbf{S} \\ \frac{d}{dt} \int_V \frac{E^2+B^2}{8\pi} \, d^3 x = -\int_V \mathbf{j} \cdot \mathbf{E} \, d^3 x - \int_S \mathbf{S} \cdot d\mathbf{a} \end{gather*} Laplace Green function (GF1) \\ $G(\mathbf{x}) = \frac{1}{4\pi\|\mathbf{x}\|}; \nabla^2 G(\mathbf{x}) = -\delta^3(\mathbf{x})$ \\ d'Alembert Green function (GF5) \\ $G(x^i) = -\frac{\delta(ct-r)}{4\pi r}; \square G(x^i) = -\delta^4(x^i)$ \\ Energy of plane wave (p.~128): $\mathbf{S} = \hat{\mathbf{k}}c \mathcal{E}_{\text{em}}$ \\ EM momentum density (p.~129): $\vec{\mathcal{P}}_{\text{em}} = \frac{\mathbf{S}}{c^2}$ \\ Inhomogeneous wave equation in Lorenz gauge (p.~133): $\square A^i = \frac{4\pi}{c} j^i$ \\ Retarded four-potentials in Lorenz gauge (142.1) \[ A^i(\mathbf{x}, t) = \frac{1}{c} \int \frac{j^i(\mathbf{x}', t - \|\mathbf{x} - \mathbf{x}'\|/c)}{\|\mathbf{x} - \mathbf{x}'\|} \, d^3 x' \] Four-current for point particle (p.~142) \begin{align*} \rho(\mathbf{x}, t) &= e\delta^3(\mathbf{x} - \mathbf{x}_c(t)) \\ \mathbf{j}(\mathbf{x}, t) &= e\dot{\mathbf{x}}_c(t) \delta^3(\mathbf{x} - \mathbf{x}_c(t)) \end{align*} Li\'enard--Wiechert potentials (p.~146) \begin{align*} A^0(\mathbf{x}, t) &= \frac{ec}{cr_r - \mathbf{v}_r \cdot \mathbf{r}_r} \\ \mathbf{A}(\mathbf{x}, t) &= \frac{e\mathbf{v}_r}{cr_r - \mathbf{v}_r \cdot \mathbf{r}_r} \end{align*} where $\mathbf{r}_r = \mathbf{x} - \mathbf{x}_c(t_r)$; $\mathbf{v}_r = \dot{\mathbf{x}}_c(t_r)$; and $t_r$ is the retarded time and satisfies $c(t-t_r) = \|\mathbf{x} - \mathbf{x}_c(t_r)\|$. \\ E and B fields of point charge (p.~148) \begin{align*} \mathbf{u} &= c\hat{\mathbf{r}}_r - \mathbf{v}_r \\ \mathbf{E} &= e\frac{r_r}{(\mathbf{r}_r \cdot \mathbf{u})^3} [(c^2 - v_r^2)\mathbf{u} + \mathbf{r}_r \times (\mathbf{u} \times \ddot{\mathbf{x}}_c(t_r))] \\ \mathbf{B} &= \hat{\mathbf{r}}_r \times \mathbf{E} \end{align*} Approximate fields of localized charge configuration ($x' \ll r, x' \ll \lambda$) (p.~158) \begin{align*} A^0(\mathbf{r}, t) &\approx \frac{q}{r} + \frac{\hat{\mathbf{r}}}{r^2} \cdot \mathbf{d}(t_0) + \frac{1}{c} \frac{\hat{\mathbf{r}}}{r} \cdot \dot{\mathbf{d}}(t_0) \\ \mathbf{A}(\mathbf{r}, t) &\approx \frac{1}{c} \frac{1}{r} \dot{\mathbf{d}}(t_0) \end{align*} where $t_0 = t - r/c$, and $\mathbf{d}$ is the dipole moment. \\ E and B fields for pure dipole (p.~163), Poynting vector (p.~164), and total power radiated (p.~165) \begin{align*} \mathbf{E} &= \frac{1}{c^2 r} (\ddot{\mathbf{d}}(t_0) \times \hat{\mathbf{r}}) \times \hat{\mathbf{r}} \\ \mathbf{B} &= \hat{\mathbf{r}} \times \mathbf{E} \\ \mathbf{S} &= \hat{\mathbf{r}} \sin^2 \theta \frac{\|\ddot{\mathbf{d}}(t_0)\|^2}{4\pi c^3 r^2} \\ P_{\text{tot}} &= \frac{2}{3c^2} \|\ddot{\mathbf{d}}(t_0)\|^2 \end{align*} Power of oscillating dipole, $d = qa \cos \omega t$ (p.~165) \\ $\langle P_{\text{tot}} \rangle = \frac{e^2 a^2}{3c^3} \omega^4$ \\ Electromagnetic stress-energy tensor \begin{gather*} T^{km} = -\frac{1}{4\pi} F^{kj} F^m{}_j + \frac{\eta^{km}}{16\pi} F^{ij} F_{ij} \\ \partial_k T^{km} = 0 \quad \text{(172.1)} \\ T^{km} = T^{mk} \quad \text{(p.~172)} \\ T^{00} = \frac{1}{8\pi} (E^2 + B^2) = \mathcal{E}_{\text{em}} \\ T^{\alpha 0} = T^{0\alpha} = \frac{\mathbf{S}}{c} \\ \begin{split} T^{\alpha\beta} &= -\frac{1}{4\pi} \bigg[E_\alpha E_\beta + B_\alpha B_\beta \\ &\qquad- \frac{1}{2} \delta_{\alpha\beta}(E^2 + B^2)\bigg] \quad \text{(p.~176)} \end{split} \\ \sigma_{\alpha\beta} = -T^{\alpha\beta} \end{gather*} $\sigma$ is Maxwell stress tensor. $T^{\alpha 0}$ is $c$ times momentum density. $T^{0\alpha}$ is $1/c$ times energy flux density. $T^{\alpha\beta}$ is momentum flux.\\ Total electromagnetic force on volume (p.~178) \begin{align*} F^\beta_V &= \int_S n^\alpha T^{\alpha\beta} da \\ F^\beta_V &= f^\beta_V + \frac{1}{c^2} \frac{d}{dt} \int_V \mathbf{S} \, d^3 x \end{align*} $n$ is inward unit normal. $f^\beta_V$ is total force on charges and currents, \[ f^\beta_V = \int_V \rho\mathbf{E} + \frac{\mathbf{j}}{c} \times \mathbf{B} \, d^3 x \] $\frac{1}{c^2} \int_V \mathbf{S} \, d^3 x$ is total electromagnetic momentum. \\ Classical electron radius (p.~187): $r_e = \frac{e}{m_e c^2} \approx 10^{-13}$ cm \\ Radiation reaction (p.~198): $m\mathbf{a} = \mathbf{F} + \frac{2e^2}{3c^3} \dot{\mathbf{a}}$ \\ Electromagnetic duality: \begin{align*} \mathbf{E} &\to \mathbf{B} \\ \mathbf{B} &\to -\mathbf{E} \\ \mathbf{d} &\to \frac{\vec\mu}{c} \\ \vec\mu &\to -c\mathbf{d} \end{align*} $\mathbf{d}$ is electric dipole moment, $\vec\mu$ is magnetic dipole moment \\ Potential of uniformly moving charge ($\mathbf{x}' = (vt, 0, 0)$, HW2) \[ \phi = \frac{\gamma e}{\sqrt{\gamma^2(x-vt)^2 + y^2 + z^2}} \] $A_x = \beta \phi \quad A_y = 0 \quad A_z = 0$ \\ Field of uniformly moving charge (HW3) \begin{align*} E_x &= \frac{\gamma e(x-vt)}{(\gamma^2(x-vt)^2 + y^2 + z^2)^{3/2}} &\quad& B_x = 0 \\ E_y &= \frac{\gamma ey}{(\gamma^2(x-vt)^2 + y^2 + z^2)^{3/2}} &\quad& B_y = -\beta E_z \\ E_z &= \frac{\gamma ez}{(\gamma^2(x-vt)^2 + y^2 + z^2)^{3/2}} &\quad& B_z = \beta E_y \end{align*} \textit{i.e.}, $\mathbf{B} = \vec\beta \times \mathbf{E}$ \\ Boundary conditions for E and B fields \begin{align*} E^+_\perp - E^-_\perp = 4\pi \sigma &\quad& B^+_\perp - B^-_\perp = 0 \\ \mathbf{E}^+_\parallel - \mathbf{E}^-_\parallel = \mathbf{0} &\quad& \mathbf{B}^+_\parallel - \mathbf{B}^-_\parallel = \frac{4\pi}{c} \vec\kappa \times \hat{\mathbf{n}} \end{align*} $\sigma$ is surface charge density, $\vec\kappa$ is surface current density \end{multicols} \end{document}